366

INZHENERNO-~FIZICHESKII ZHURNAL

APPROXIMATE METHODS OF CALCULATING SOLIDIFICATION OF CASTINGS

Yu. A. Samoilovich

Inzhenerno-Fizicheskii Zhurnal, Vol. 11, No. 5, pp. 651—657, 1966

UDC 536.248+536.421.4

Two approximate methods are described for solving the problem of
solidification of plane castings of a material crystalizing at constant
temperature, under boundary conditions of the 3rd kind on 2 cooled
surface.

1, We shall examine the process of solidification of
a plane casting of thickness S undergoing heat transfer
at its outer surface according to Newton's law of con-
vection. The mathematical formulation of the problem
includes the heat conduction equation
aT T
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and the boundary conditions
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the origin of coordinates (x = 0) being taken on the
cooled surface of the casting. The thermophysical
properties of the material are assumed constant; super-
cooling of the melt at the crystallization front is not
taken into account; and the temperature of the liquid
core of the casting is assumed to be unchanging and
equal to the crystallization temperature.

In this form the problem has been examined by
Veinik [1] using an integral method of heat balance with
an assigned temperature profile at the solid crust
(0 = x = &) according to the formula

T(x, ) =T, S St N P S
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The value of the index m was determined by Veinik
only for the case of a boundary condition of the first
kind (Bi — «) from comparison with the known exact
solution for the problem.

Results are presented below of a determination of
the index n on the basis of numerical solution of the
problem, and then an approximate analytical method
of computation is developed.

The numerical solution of the problem determined
by the system (1)—(6) has been carried out by a finite
difference method using the "extension network™ pro-
posed in reference [2]. In distinction from reference
[2], however, the heat conduction equation was ap-
proximated by a network equation of implicit form

Ti,k+1 - Ti.b = a
At % ’
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from which it follows that
Ti*l,kﬂ - (2 + So) Tz',k-l-l + Tf+x,k+1 = SoTi.lzv (8)
where S, = Ax’/aAt, Ax =&/M, a=2A/cy.

Equation (8) has been solved by the "screw®™ method
[3], which leads to a computation relation of the type

Tiror= Aers Birsr + Titppnr): 9)

In the first stage of the screw, coefficients Aj and B
are determined at the nodes of the network region

"according to the formulas

A o= U2+ — A pa)s

B; 1= A1 perBir 14507 1t (10)

The calculation there is carried out from the external
surface of the casting, where the values A; and By are

"known at the node of the network located at a distance

Ax/2 from the surface outside the section (Fig. 1):

A, ( 1 _CLA‘X/« /( | ul X, )’
. 2h 1 2h

B, — 2 X, Tc/( 1 _uAkx,e) .
A S 2h

(11)

In the second stage of the screw the temperatures are
determined at the nodes of the network region accord-
ing to formula (9), beginning from a node coinciding
with the solidification front.

Calculation of the increase of the crust in time At
is performed according to the formula obtained from
condition (3):

At
«OYA 'X/(’

Ay = - T (12)
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After determination of Ag, the thickness of the crust
is found at time k + 1, i.e., &g+1 =&k + Agk, as well
as the new thickness of the elementary layers Axp4q =
= Axg + Agp/M.

Before repeating the calculation of displacement
is carried out of the values of temperature to a node
of the new (extended) network by means of the inter- .
polation formula

C0E A
T=T, - O‘I)” éEL(TzH — T,
M Ax,
wherei=1,2,3,...,M - 1 (beginning from the node

adjacent to the surface of the casting).

The use of the implicit scheme of the network equa-
tion, which is stable during the computations for any
values of the intervals Ax and At, allowed the volume
of computation to be cut down by a factor of ten in com~-
parison with the explicit scheme, which is limited by
the condition that the interval At must be selected
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=< Ax2/2a. In carrying out the calculations, accom-
plished on a "Minsk-1" computer, the solid cross
section was divided into 9.5 intervals Ax; evaluation
of the accuracy of calculations showed that the error
in determining the temperature field did not exceed
one or two tenths of one per cent.

The result of the calculations allowed construction
of a graph of the total duration of solidification tf, of
the casting, expressed by means of the parameter
(Fo)f = at/S%, as a function of the parameters Bi and
K, (Fig. 2). The top corner of the figure shows values
of the parameter (Fo);,, corresponding to time of growth
of the initial thickness of the cruste, = 0.1s, from
which calculation by the network method commences.
Values of (Fo);, have been calculated from Veinik's
formula (1, page 63) with 85 = ¢,/S=0.1.

The data of the calculations by the network method
were used further to determine the index n in for-
mula (7). As analysis shows, the value of n rapidly
becomes stablized with time; the values of n thus
determined are shown in Fig. 3 as a function of para-
meters Bi and K.

2. An approximate analytical solution of the prob-
lem (1)—(6) was obtained in [1] by the integral heat
balance method. An interesting idea is to use for this
purpose variational methods of solution with the ob~-
jective of increased accuracy of calculation.
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Fig. 1. Schematic temperature distribution
in the solid cross section.

We therefore made use of the variational method
of Biot [4—6] to solve the problem (1)—(6). According
to the procedure of this method, for one-dimensional
unsteady heat conduction problems there is a dif-
ferential equation of the Lagrange type

W D 0| 5
dy Jq 99 line
where
O Lo,
i —cy | Bdx, Doss \ Hidx;
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H= —cy{0@dx-const; ©=T, —T;
g is a generalized coordinate for which we have used
the thickness of the solidified layer, &, below.
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Setting

OH o

— =py —cy— } Odx,

Je oy Y 7z |
we shall satisfy boundary condition (3), since the heat
flux vector H is determined by the equation

cyO == —divH
and, in addition,
g0 08
de ox

We shall assign the temperature profiles at the
solid cross section with the aid of formula (7), which
we shall rewrite in the form
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Fig. 2. (Fo); = atg/S® versus parameters Bi
and Ki'

Using expression (7a) to determine the components of
relation (13), we arrive at the equation

dy[K?(y - Ny ( Ry
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r = dFo. (14)

for

N=nBi. y=r¢s

Integrating the latter equation with the initial condition
y(0) = 0, we obtain the calculation relation

Vi 11|

MFo = 2(¢; — B,y + ¢ - 2y, Ayln
-y, By In (bi\zf + o byl | (26 = B (). (15)
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if 4by — a3 > 0;
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Fig. 3. Index n versus para-
meters Bi and K;.

Here

by— @y, =By v = (@—PBu)— B, — o),
Y= (o —- 63) - ﬁz (@, — B,
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4n 41
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‘l, L, =N3K,. (15a)
In particular, when Bi — « (N — 0), the solution takes
the form

y =V MFo, (16)

where M, is determined by formula (15a).

The values of the coefficient M,, as calculated
from formula (15a) as a function of n are shown by the
solid inclined lines on Fig. 4.

The horizontal straight lines on the same figure
correspond to values found from the exact solution of
Stefan [7], from the transcendental equation -

Vo

MY
5 " MK, exp T)erf “Q—I’Ml):':l. (17

The points of intersection of the curves M; and Mj
determine the values of the index n, corresponding to
the exact solution of the problem.

Values of the coefficient M",= {2n(n + 1)] /

/ [1+K,n+1)]whichappears in the well known solution of
Veinik [1], are shown on the same figure by dotted
lines.

It may be seen from the figure that the values of
the coefficients M; and M" are close together at
points of intersection with the lines corresponding to
the exact values of M',.
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Fig. 4. Comparison of the co-
efficients M;, calculated by a
variational method (I) and ac-
cording to Veinik's formula (II),
with the exact solution of Stefan
(IfI): a is for Ky = 0.413; b is
for Ky = 0.823; c is for Ky =2,03,
where Ky = p/c (T, ~ T¢).

With increasing deviation from the above point, the
discrepancies between M;, M", and M', increase while,
for the Veinik solution, the difference inthe coefficients
M", and M'{ increases much more rapidly than for the
solution obtained by the variational method. The advan~-
tage of the variational method is clearly seen in the
stability of the index M, as regards oscillations of the
index n.
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Similarly, for finite values of the Biot number, the
results of calculations according to relations (15),
(15a) depend to a lesser degree on oscillations of the
index n, than in the calculations according to the
Veinik formulas. In addition, for a boundary condition
of the third kind on the surface of the casting, the
variational method leads to excessively awkward re -
lations in comparison with the formulas of reference
[1]. When using the exact values of the index n (in
particular for a plane casting according to the graphs
of Fig. 8) calculations according to the Veinik formulas
lead to results which are practically concident with
the data of the network method and of the variational
method (the initial data of the calculation being iden-
tical).

NOTATION

T is the temperature; t is the time; x is the co-
ordinate; & is the thickness of the solidified layer;
A, ¢, ¥ are the thermal conductivity, specific heat,
material density; p is the specific heat of crystalli-
zation; o is the heat transfer coefficient; Bi = aS/A
is the Biot number; Fo = at/S? is the Fourier number;
K, = p/c{Ter — Te) is the heat emission intensity
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criterion; M is the number of layers of the network
region.
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